Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 9(11)2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138306

RESUMO

In grapes, the number of flowers per inflorescence determines the compactness of grape bunches. Grape cultivars with tight bunches and thin-skinned berries easily undergo berry splitting, especially in growing areas with heavy rainfall during the grapevine growing season, such as Japan. We report herein that grape cytokinin oxidase/dehydrogenase 5 (VvCKX5) determines the number of berries per inflorescence in grapes. The number of berries per bunch was inversely proportional to the VvCKX5 expression level in juvenile inflorescences among the cultivars tested. VvCKX5 overexpression drastically decreased the number of flower buds per inflorescence in Arabidopsis plants, suggesting that VvCKX5 might be one of the negative regulators of the number of flowers per inflorescence in grapes. Similarly, the overexpression of grape sister of ramose 3 (VvSRA), which encodes trehalose 6-phosphate phosphatase that catalyzes the conversion of trehalose-6-phosphate into trehalose, upregulated AtCKX7 expression in Arabidopsis plants, leading to a decrease in the number of flower buds per Arabidopsis inflorescence. VvCKX5 gene expression was upregulated in grapevine cultured cells and juvenile grape inflorescences treated with trehalose. Finally, injecting trehalose into swelling buds nearing bud break using a microsyringe decreased the number of berries per bunch by half. VvCKX5 overexpression in Arabidopsis plants had no effect on the number of secondary inflorescences from the main inflorescence, and similarly trehalose did not affect pedicel branching on grapevine inflorescences, suggesting that VvCKX5, as well as VvSRA-mediated trehalose metabolism, regulates flower formation but not inflorescence branching. These findings may provide new information on the crosstalk between VvSRA-mediated trehalose metabolism and VvCKX-mediated cytokinin degradation for determining the number of berries per bunch. Furthermore, this study is expected to contribute to the development of innovative cultivation techniques for loosening tight bunches.


Assuntos
Citocininas/metabolismo , Frutas/anatomia & histologia , Trealose/metabolismo , Vitis/anatomia & histologia , Vitis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Células Cultivadas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Inflorescência/genética , Modelos Lineares , Ácidos Naftalenoacéticos/farmacologia , Oxirredutases/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estações do Ano , Trealose/farmacologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Vitis/efeitos dos fármacos , Vitis/genética
2.
PLoS One ; 13(3): e0194807, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29566077

RESUMO

Koshu is indigenous to Japan and considered the most important wine grape in Japan. Koshu grape berry possesses characteristics that make it unique from European V. vinifera as wine grape. However, the physiological characteristics of Koshu leaf and internode remain unknown. An understanding of those characteristics would contribute to improvements in Koshu cultivation, thereby enhancing grape berry and wine quality. To identify the genes responsible for the physiological characteristics of Koshu, we comprehensively analyzed leaf and internode differences at the transcriptome level between Koshu and Pinot Noir by RNA sequencing. A total of 248 and 131 differentially expressed genes (DEGs) were detected in leaves and internodes, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of these DEGs revealed that "flavonoid biosynthesis" and "glutathione metabolism" pathways were significantly enriched in Koshu leaves. On the other hand, when internodes were compared, "flavonoid"-related GO terms were specifically detected in Koshu. KEGG pathway enrichment analysis suggested that the expression of such genes as leucoanthocyanidin reductase and flavonol synthase in the flavonoid biosynthesis pathway was higher in Koshu than Pinot Noir. Measurement of the relative expression levels of these genes by RT-qPCR validated the results obtained by RNA sequencing. The characteristics of Koshu leaf and internode, which are expected to produce flavonoids with antibacterial activity and UV protection function, would suit Japanese climate as a survival strategy.


Assuntos
Análise de Sequência de RNA/métodos , Vitis/anatomia & histologia , Vitis/genética , Frutas/anatomia & histologia , Frutas/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Japão , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Transcriptoma , Vinho
3.
Plants (Basel) ; 6(3)2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28757594

RESUMO

Vitis vinifera glycosyl hydrolase family 17 (VvGHF17) is a grape apoplasmic ß-1,3-glucanase, which belongs to glycosyl hydrolase family 17 in grapevines. ß-1,3-glucanase is not only involved in plant defense response but also has various physiological functions in plants. Although VvGHF17 expression is negatively related to the length of inflorescence in grapevines, the physiological functions of VvGHF17 are still uncertain. To clarify the physiological functions of VvGHF17, we conducted a phenotypic analysis of VvGHF17-overexpressing Arabidopsis plants. VvGHF17-overexpressing Arabidopsis plants showed short inflorescence, similar to grapevines. These results suggested that VvGHF17 might negatively regulate the length of inflorescence in plants. VvGHF17 expression induced a delay of floral transition in Arabidopsis plants. The expression level of FLOWERING LOCUS C (FLC), known as a floral repressor gene, in inflorescence meristem of transgenic plants were increased by approximately 10-fold as compared with wild plants. These results suggest that VvGHF17 induces a delay of floral transition by enhancing FLC expression and concomitantly decreases the length of plant inflorescence.

4.
Exp Anim ; 65(3): 285-92, 2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27041457

RESUMO

Previous studies have shown that intermittent cold stress (ICS) induces depression-like behaviors in mammals. Tupaia belangeri (the tree shrew) is the only experimental animal other than the chimpanzee that has been shown to be susceptible to infection by hepatitis B and C viruses. Moreover, full genome sequence analysis has revealed strong homology between host proteins in Tupaia and in humans and other primates. Tupaia neuromodulator receptor proteins are also known to have a high degree of homology with their corresponding primate proteins. Based on these similarities, we hypothesized that induction of ICS in Tupaia would provide a useful animal model of stress responses. We exposed young adult Tupaia to ICS and observed decreases in body temperature and body weight in both female and male Tupaia, suggesting that Tupaia are an appropriate animal model for ICS studies. We further examined the efficacy of a new small-molecule compound, C737, against the effects of ICS. C737 mimics the helical structure of neuron-restrictive silencer factor (NRSF/REST), which regulates a wide range of target genes involved in neuronal function and pain modulation. Treatment with C737 significantly reduced stress-induced weight loss in female Tupaia; these effects were stronger than those elicited by the antidepressant agomelatine. These results suggest that Tupaia represents a useful non-rodent ICS model. Our data also provide new insights into the function of NRSF/REST in stress-induced depression and other disorders with epigenetic influences or those with high prevalence in women.


Assuntos
Resposta ao Choque Frio/efeitos dos fármacos , Resposta ao Choque Frio/genética , Modelos Animais , Proteínas Repressoras/fisiologia , Tupaia , Acetamidas/farmacologia , Animais , Antidepressivos/farmacologia , Resposta ao Choque Frio/fisiologia , Depressão/etiologia , Depressão/genética , Epigênese Genética , Feminino , Humanos , Masculino , Neurônios/fisiologia , Dor/etiologia , Dor/genética , Redução de Peso/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...